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The wave function of a system containing identical particles takes into account the relationship between a
particle’s intrinsic spin and its statistical property. Specifically, the exchange of two identical particles having
odd-half-integer spin results in the wave function changing sign, whereas the exchange of two identical particles
having integer spin is accompanied by no such sign change. This is embodied in a term (-1)2s, which has the
value +1 for integer s (bosons), and -1 for odd-half-integer s (fermions), where s is the particle spin. All of
this is well-known. In the nonrelativistic limit, a detailed consideration of the exchange of two identical
particles shows that exchange is accompanied by a 2π reorientation that yields the (-1)2s term. The same
bookkeeping is applicable to the relativistic case described by the proper orthochronous Lorentz group, because
any proper orthochronous Lorentz transformation can be expressed as the product of spatial rotations and a
boost along the direction of motion.

I. Introduction

The relationship between a particle’s intrinsic spin and its
statistical property lies at the heart of physical science. It is
integral to the fundamental laws of nature and therefore to the
numerous fields that are derivative of these laws. For example,
nearly every college student has encountered the Pauli exclusion
principle, which applies to identical particles that obey
Fermi-Dirac statistics. This principle enables the periodic table
to be rationalized by using a mnemonic in which electrons are
allotted one each to spin-orbitals.

In a quantum mechanical many-body system composed of
identical particles, the interchange of any two particles is
accompanied by the overall wave function Ψ either changing
sign or not. This can be reconciled with the help of a permutation
operator Pij whose role is to exchange particles i and j. Applying
Pij twice in succession must yield unity: Pij

2 Ψ ) Ψ, so the
eigenvalue of Pij

2 is 1. It follows that PijΨ) (Ψ, and
consequently Ψ must be either symmetric or antisymmetric with
respect to the exchange of identical particles. Particle spin
dictates whether Ψ is symmetric (bosons) or antisymmetric
(fermions). Integer s is associated with bosons, and odd-half-
integer s is associated with fermions, where s is the particle
spin. This relationship between a particle’s spin and its statistical
property can be taken for granted or proven through arduous
means.

Now consider the amplitude1

The regions between commas are referred to as slots. Each slot
is associated with a particle. Convention is that particles are
numbered in ascending order from left to right; i.e., the first
slot corresponds to particle 1, the second to particle 2, and so
on. Particle numbering and subscript numbers are not to be
confused. Entries x1, x2, etc. denote descriptors (i.e., spatial
coordinates and spin labels), but not particle identity. The latter

is given by slot location, which is unaffected by permuting the
contents of slots. For example, ψ(x2,x3,x1,...) is the amplitude
for finding particle 1 described by x2, particle 2 described by
x3, particle 3 described by x1, and so on.

The overall wave function Ψ can be expressed as a linear
combination of amplitudes such as the one in eq 1. This linear
combination spans all permutations of particle identity over the
field of descriptors. Leaving aside normalization, it can be
written

where | cij| ) 1. Equation 2 includes (though not indicated
explicitly) multiple interchanges that achieve all permutations
of particle identity over the field of descriptors. These are
expressed using products of coefficients, e.g., c23c13ψ(x3,x1,x2,...).

Referring to eq 2, when the contents of any two slots are
interchanged in each and every amplitude (of course, using the
same slot pair in each amplitude), Ψ must either change sign
or not. Consequently, for a given group of identical particles,
each cij must have the same value: +1 for bosons or -1 for
fermions. Thus,

for all i * j. Equations 2 and 3 give wave functions Ψ that are
symmetric with respect to Pij for integer s and antisymmetric
with respect to Pij for odd-half-integer s.

The above algorithm is beyond reproach in the sense that it
works. For example, electronic structure theory enlists it in the
form of Slater determinants or second quantization to construct
antisymmetrized electron wave functions. Moreover, hard and
fast rules for (identical) fermions and bosons follow. One
fermion at most can occupy a given spin-orbital, whereas any
number of bosons can occupy a given spin-orbital. Two or
more noninteracting fermions having the same spin quantum
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ψ(x1,x2,...,xi,xj,...) (1)

Ψ ) ψ(x1,x2,x3,...) + c12ψ(x2,x1,x3,...) +
c13ψ(x3,x2,x1,...) + ... (2)

cij ) (-1)2s (3)
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number cannot be simultaneously present in the same place,
whereas noninteracting bosons prefer this.

What is disquieting in the above algorithm, however, is the
tacit assumption that the permutation operator Pij exchanges
particles. It actually exchanges the contents of slots in a
mathematical expression. We shall see that particle exchange
carried out explicitly differs in a subtle way that yields eq 3
directly.

Proofs of the relationship between a particle’s intrinsic spin
and its statistical properties have used relativistic quantum field
theory or something close to it in difficulty,2 in contrast to the
simplicity of (-1)2s. Thus, an elementary explanation has been
sought, e.g., as championed by Feynman:3 “The explanation is
deep down in relativistic quantum mechanics. This probably
means that we do not have a complete understanding of the
fundamental principle involved. For the moment, you will just
have to take it as one of the rules of the world.” Attempts to
rectify this situation have been varied. A proof by Sudarshan is
said by him to be “simple, physical, and intuitive, but still not
completely free from the complications of relativistic quantum
field theory”.4 Though easier than other proofs, it is not easy.
A proof by Berry and Robbins does not use relativistic quantum
field theory,5-7 but its topological arguments make it at least as
challenging as the field theory proofs. Derivations germane to
the nonrelativistic regime8-14 have been criticized for reasons
such as requiring that quantum mechanics acquires an additional
postulate, assigning shape to a point particle, overlooking the
fact that SO(3) is not a simply connected topological space,
disregarding the light cone, mixing homotopy groups, and so
on.14-18

Feynman revisited this matter in his Dirac Memorial Lecture,
but without an elementary explanation.19 As an afterthought he
mentioned parlor tricks brought to his attention by Finkelstein.20-22

For example, a belt is used to show that a 4π twist can be
undone by moving one object around another while maintaining
its orientation relative to the observation frame. On the other
hand, Hilborn argues that such demonstrations are irrelevant:18

“... this analogy is not an explanation. Nowhere does the spin
of the object enter the discussion nor is it clear what the twist
in the constraint has to do with the change in sign of the
fermion’s wave function.” Duck and Sudarshan side with
Hilborn, arguing that belts and the like have no bearing on
exchanging identical fundamental particles because the particles
and their spinors are points.15

The relativistic quantum field theory proof of the spin-
statistics theorem is of course rigorous.23 However, this does
not mean that relativity is necessary to explain the relationship
between spin and statistics. Because relativistic quantum field
theory is correct (by definition subsuming all of nonrelativistic
physics), it will yield correct results for a given phenomenon,
regardless of whether the underlying physics is inherently
relativistic or not. In this regard, it is noteworthy that the
relationship between a particle’s spin and its statistical properties
is robust over a quite large nonrelativistic energy range, which
supports the thesis that this relationship is not inherently
relativistic. Taking this a step further, in the nonrelativistic
regime there is, for all practical purposes, no new physics to be
uncovered, so the key to understanding the (-1)2s term must
be bookkeeping. Moreover, this must involve distinguishing
labels and the exchange operation, as this is all that remains.

Because spin appears at the outset in the Dirac theory, one
might question whether the symmetric treatment of space and
time is essential to the spin-statistics relationship. It will be
pointed out that such is not the case. This is not surprising, as

spin and its properties are retained in the low-velocity limit of
the Dirac equation, i.e., the (nonrelativistic) Pauli equation.24,25

In section II, the bookkeeping issue that yields the (-1)2s term
in the nonrelativistic limit is identified through careful examina-
tion of particle exchange. A 2π reorientation is revealed,
facilitated greatly by visual aids. Application of the phase
transformation operator:26,27 e-isb·�b yields the (-1)2s term.

Section III provides corroborating information germane to
spin-1/2. It is noted, using a mathematical object called the 3-ball,
that the topological space of proper rotations in 3 dimensions,
SO(3), is not simply connected, whereas SU(2), the group of
2 × 2 complex unitary matrices with determinant 1, is simply
connected.28-30 Thus, state vectors need not be single valued
in 2π, whereas they must be single valued in 4π. Because SU(2)
is a double cover of SO(3), its relationship with spin-1/2 is clear.
The corresponding relativistic groups are the proper orthochro-
nous Lorentz group (hereafter referred to as the proper Lorentz
group), SO+(1,3), and the spin transformation group, SL(2,C).
The double cover of SU(2) onto SO(3) is present in the
corresponding relativistic groups, with SL(2,C) being a double
cover of SO+(1,3). This identifies the spin-statistics relation vis-
à-vis the proper Lorentz group as deriving from spatial rotation,
just as in the nonrelativistic case.

Transformations of the proper Lorentz group vary smoothly
and continuously about the identity. Any such transformation
can be expressed as the product of spatial rotations and a boost
in the direction of motion.31 It follows that the nonrelativistic
result can be imported into the relativistic theory via the SO(3)
part of the proper Lorentz transformation. Finally, it is noted
that Pauli spinors are rotors that move axes into desired
locations, i.e., a classical concept.32 Applying such rotors to spin-
1/2 demonstrates the half angle transformation that accounts for
exclusion.33

No attempt is made at a detailed derivation. We shall not
venture beyond standard quantum mechanics, nor will spin’s
origin or deep meaning be discussed. Spin is taken as a giVen.
The goal is an explanation that is accessible to a broad range
of physical chemists.

II. Exchange

To examine the exchange of two identical particles, it is
necessary to determine all parameters associated with the
“before” and “after” configurations. Referring to Figure 1a,
particle locations are indicated by rba and rbb (open circles).
Respective spin parameters (not indicated in the figure) are
labeled sa and sb. These labels are collective: they refer to
magnitudes, projections, and phases. It is often convenient to
use kets such as eiδa|s,ma〉, where δa is the phase, which plays
a central role.

The pairs rba,sa and rbb,sb are defined relative to a reference
frame that we shall call the laboratory frame. The placement of
this frame is not important. In Figure 1, its origin is where the
dashed lines intersect and its z-axis can be taken as the spin
quantization axis. This choice is arbitrary; it cannot affect the
result. Keep in mind that rba,sa and rbb,sb are not each associated
with a specific particle. Each is associated with both particles
because of indistinguishability. All that can be known is that
one of the particles is at rba with spin parameters sa, whereas
the other is at rbb with spin parameters sb. It is not possible to
know which particle is at a given location.

Particles 1 and 2 are now assigned to rba,sa and rbb,sb,
respectively, as indicated in Figure 1b. Particle 1 is at rba in spin
state eiδa|s,ma〉, whereas particle 2 is at rbb in spin state eiδb|s,mb〉.
It is convenient to set the phases δa and δb each equal to zero
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in this before configuration. One can now envision exchange
as the replacement of Figure 1b by Figure 1c. Particle 1 appears
at rbb in spin state eiδb|s,mb〉, whereas particle 2 appears at rba in
spin state eiδa|s,ma〉. However, and this point is critical, the phase
difference, δa - δb, which has been set to zero before exchange,
is not necessarily zero following exchange. Note that permuting
the contents of slots does not take into account the possible
change of δa - δb. This is the reason (-1)2s had to be imported
ad hoc.

The scenario in Figure 1, despite its intuitive appeal, pays
insufficient attention to angles. If exchange is accompanied by
a 2π displacement, this will go unnoticed in the absence of an
additional diagnostic, because we do not readily distinguish
angles that differ by integer multiples of 2π. For example,
suppose you have a model of a Cartesian frame in your office.
You show it to a friend who leaves the room for a few minutes
and then returns. He or she would not be able to tell whether
the frame had been rotated by an integer multiple of 2π in their
absence. Yet, for odd-half-integer spin and a 2π displacement,
the phase difference, δa - δb, would be affected profoundly,
yielding the sign change described below.

To address this issue, reference frames are assigned to each
particle, as indicated in Figure 2. Particle 1 is located relative
to its frame, and its frame is located relative to the laboratory,
likewise for particle 2. The particles are placed on “y-axes” for
viewing convenience. This incurs no loss of generality, as the
placement of these additional frames is at our discretion. These
frames might appear to be redundant in the sense that they do
no harm but also add no information. The reason for introducing
them is that they will (eventually) prove instrumental in
revealing a 2π displacement.

Next, rba,sa and rbb,sb are held fixed while the particle/frame
combinations are exchanged. In effect, the particle/frame
combinations enable 3D shapes to be transformed. A point
object like an electron has no shape or size. It cannot rotate
about its center-of-mass, so its orientation only has meaning
with respect to a reference frame.

The theory of quantum mechanics is based on postulates that
require the specification of coordinates. Spatial wave functions
are not affected by adding integer multiples of 2π to an angular
coordinate. The same is not true for odd-half-integer spin, for
example, spin-1/2. Though its spinor has no spatial wave
function, rotational transformation changes its phase. Specifi-
cally, the spinor is single valued in 4π and changes sign in 2π.
When dealing with the exchange of identical particles, phases
matter a great deal. Thus, it is necessary to distinguish integer
multiples of 2π if we are to eliminate the sign ambiguity. This
is the motivation behind frames 1 and 2.

In examining Figure 2, one is tempted to conclude that
nothing new has been revealed. The scenario in Figure 1 has
been repeated, but with frames included. Figure 2, like Figure
1, pays insufficient attention to anglessa magic wand has
converted (a) into (b).

To see what is going on, the frames are connected to one
another with a tether, as shown in Figure 3. I was not able to
make a good drawing of the tether and its twists, so photographs
will have to suffice. The role of the tether is strictly diagnostic,
i.e., to answer the question: Does exchange induce a 2π
reorientation? Quantum mechanics has nothing to do per se with
the frames and tether. They are mere visual aids that enable us
to identify a frame reorientation should it arise.

On a related matter, an intuitive way to introduce geometric
phase uses a local reference frame to record the accumulation
of geometric phase along a path.34 This arises in the electronic
structure of polyatomic molecules, where conical intersections
are common and the associated geometric phases play a
significant role.35 The use of local reference frames in this
context inspired the frames introduced in Figures 2 and 3.

A simple example of geometric phase involves vector
transport on a curved surface, as with the Foucault pendulum.
To see how this works, place an arrow tangent to a sphere at
its north pole, and carry it along a longitude (a geodesic) to the
equator without twisting it relative to the longitude. Then carry

Figure 1. (a) Locations are denoted rba and rbb (open circles), with sa

and sb (not indicated) being the respective spin labels. The z-axis is
taken as the spin quantization axis. The parameter sets: rba,sa and rbb,sb

are not each for a specific particle because the particles are indistin-
guishable. (b) This indicates the situation before exchange. Particles 1
and 2 (filled black circles labeled particle 1 and particle 2) are assigned
to rba,sa and rbb,sb, respectively. (c) This indicates the situation after
exchange. This diagram is the same as (b) except that particles 1 and
2 have traded locations.

Figure 2. Particles 1 and 2 are indicated with black circles. (a) This is the situation before exchange. (b) After exchange the blue and red frames,
together with particles 1 and 2, have traded locations.
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the arrow along the equator through an azimuthal angle �, again
without twisting it. Finally, return the arrow to the north pole
on a longitude without twisting it. The arrow has not been
twisted on the three geodesics that comprise its path, but when
it arrives back at the north pole it is displaced by the angle �
from its original orientation. The angular changes that yield �
occur at the apexes where the path switches from one geodesic
to another.36 Had the trip around the equator been a complete
revolution (� ) 2π), the arrow would have arrived back at the
north pole appearing to have the same orientation as before it
started its journey. In fact, it would have been reoriented by 2π
relative to its original orientation.

In this case it is straightforward to show that the amount of
geometric phase depends only on the enclosed area of a closed
path on a (unit) sphere.36 In molecular electronic structure, the
most elementary geometric phases involve two diabats and two
adiabats. As only two states are involved, these systems have
spinor representations, so an enclosed area of 2π on a unit sphere
(in a space where the nuclear coordinates are used as parameters)
corresponds to a change of sign of the electronic wave function.
In the same spirit, the use of local frames in the present paper
is to reveal a 2π reorientation. Here, there is no spatial region
that is avoided when taking a closed circuit, as with conical
intersections35 and the Aharonov-Bohm effect.37-39 Nonethe-
less, the local frame serves the purpose of revealing angular
displacement.

Figure 3 shows that the tether acquires a 2π twist when the
particle/frame combinations are exchanged without rotating
either relative to the laboratory. Following exchange, particle
1 can be assigned to rbb,sb with no angular displacement of frame
1 relative to the laboratory. Particle 2 is then assigned to rba,sa,
but with a 2π angular displacement of its frame relative to the
laboratory. (Generality is not compromised. It would be equally
valid to assign frame 2 to the laboratory. Frame 1 would then
acquire a -2π displacement and the same result would be
obtained.) The 2π displacement changes the phase of the ket

|s,ma〉 that has been assigned to particle 2. When e-isb·�b () e-i2πsz)
operates on |s,ma〉 it yields the term (-1)2s:

For this result to be general it must be independent of which
axis pair is coupled by the tether (i.e., x1/x2, y1/y2, or z1/z2), as
well as the orientation of the tether. To ensure that this is the
case, two frames were constructed and Velcro tabs were attached
to each axis, as well as to the ends of a plastic tether. Variations
of the scenario presented in Figure 3 were tested (this time using
3 axes rather than the 2 in Figure 3). If the tether hangs
vertically, as in Figure 3, the axis pair to which it is appended
does not matter. Following exchange, a 2π rotation in the
horizontal plane recovers the original orientation. It is understood
that “original orientation” is modulo 4π, as discussed below.
In other words, a 4π twist is the same as the identity. If the
tether is now connected such that its width is vertical, it is found
that, following exchange, a 2π rotation in the horizontal plane
again recovers the original orientation. As before, this result is
independent of the axis pair to which the tether is appended.

The above tests indicate that the tether width can be oriented
in any of the three orthogonal directions and the original frame
orientation is recovered by a single 2π rotation as in Figure 3c.
The result is also independent of where the 2π rotation is taken.
If the above exercise is repeated except the 2π rotation is about
the x- or y-axis, the original orientation is still recovered. Thus,
particle exchange includes a concomitant 2π reorientation. It
does not matter where the 2π rotation is taken, so the result is
independent of the choice of spin quantization axis, as required.
As a final demonstration, 3 tethers were used to couple each
axis pair simultaneously. The system appears quite tangled
following exchange. Nonetheless, a 2π rotation about any axis
undoes the twists in the tether, modulo 4π. After all is said and
done, nothing unusual has been unearthed. It is just a matter of
taking orientation into account with the exchange operation.

Because odd-half-integer spin is single valued in 4π, it
does not matter if integer multiples of 4π are added. Referring
to Figure 3b, were the blue frame to complete a full circuit
around the red frame the result would be unity because
exchange must be its own inverse. The 4π twist that would
be incurred is consistent with this. It is pointed out in the
next section (and in the Appendix) that a 2π twist cannot be
removed by varying a parameter because the topological
space SO(3) is not simply connected. However, a 4π twist
can be removed by varying a parameter, so it is equivalent
to the identity. Referring to Figure 3, note that it is impossible
to exchange the positions of the red and blue frames (while
maintaining no rotation relative to the laboratory) and not
have the tether become twisted by an odd-integer multiple
of 2π, which (modulo 4π) is equivalent to 2π.

This completes the main result. Section III deals with the
important case of spin-1/2. Section IV is a summary.

III. Details

Section II provided an explanation of the principle whereby
wave functions are either symmetric or antisymmetric with
respect to the exchange of two identical particles. Arguments
were based on bookkeeping and nonrelativistic physics. Ap-
plication of the operator e-isb·�b to the 2π reorientation that
accompanies exchange yielded the term (-1)2s.

Figure 3. Blue and red frames are joined to one another with a tether.
(a) Prior to exchange the blue frame is in front of the red frame. (b)
After exchange the blue frame is behind the red frame and the tether
has acquired a twist. (c) The twist can be undone by a 2π rotation,
which gives (d).

e-i2πsz|s,ma〉 ) e-i2πma|s,ma〉 ) (-1)2ma|s,ma〉 )

(-1)2s|s,ma〉 (4)
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The Dirac equation describes an electron and its antiparticle,
including the creation and annihilation of particles (field theory).
It is valid throughout the regime of special relativity, whereas
its low-velocity limit is the Pauli equation:24,25

The Pauli equation describes an electron in the regime of
nonrelativistic physics, including the value g ) 2 for the reduced
gyromagnetic ratio. Referring to eq 5, the σi are Pauli matrices,
Ab is the magnetic vector potential, Bb ) ∇b × Ab is the magnetic
field, Φ is the scalar electric potential, and |ψ〉 is a 2-spinor,
hereafter referred to simply as a spinor. One might question
whether a vestige of the relativistic theory is retained in the
low-velocity limit given by eq 5, thereby accounting for the
(-1)2s term that yields a sign change upon 2π angular
displacement. I would not think so, but the question has been
posed. It is also fair to ask if the explanation presented in the
previous section remains valid in the relativistic regime, and if
so, how might it be incorporated into the theory?

These issues can be resolved through consideration of the
proper (orthochronous) Lorentz group, SO+(1,3). Its transforma-
tions preserve the Lorentz norm and are continuous about the
identity, as they do not include time reversal and parity. Every
proper Lorentz transformation can be expressed as the product
of spatial rotations and a spacetime boost along the direction
of motion.31 If the chosen reference frame is such that motion
takes place along an inconvenient direction, one simply rotates
the desired axis onto the direction of motion, applies the boost,
and then rotates to the final orientation. The boost is topologi-
cally trivial. The rotational part of the transformation is the
standard SO(3) one encountered in nonrelativistic physics.

A matrix product describing a proper Lorentz transformation
in terms of a boost and a rotation is given by40

where sinh � ) -(υ/c)[1 - (υ/c)2]-1/2. The SO(3) matrix is

usually expressed in terms of Euler angles. The Lp in eq 6 acts
single-sidedly on the contravariant 4-vector:

where x0 ) ct, and Minkowski spacetime is assigned the
Lorentzian metric (also called the Bjorken-Drell metric) with
signature (+, -, -, -). Applying Lp to x yields new spacetime
coordinates while preserving the Lorentz norm: ||x||2 ) (x0)2 -
(x1)2 - (x2)2 - (x3)2. Equation 6 shows that spatial rotation can
be dealt with separately from the boost. This is relevant because
Section II dealt with rotational transformation.

Topology. The orientation of a 3D object is described
uniquely and continuously by the group SO(3). As a topological
space, SO(3) is connected, but not simply connected. Thus, state
vectors need not recover their original phase when rotated by
2π, e.g., as in the case with odd-half-integer spin. One way to

illustrate this “non-simply-connected” nature enlists what
mathematicians call the 3-ball.41,42 This is a solid sphere of radius
π. Points within this sphere and on its surface account for all
possible orientations of an asymmetric object. A few comments
are given here; the Appendix provides details.

Briefly, “loops” in the 3-ball that are created by a 2π
revolution of a physical object cannot be contracted to a point,
meaning that SO(3) is not a simply connected topological space.
On the other hand, 4π revolutions create loops that can always
be contracted to a point, so this space is simply connected. The
important thing is this: A loop that cannot be contracted to a
point cannot be identified with the identity, so a state vector
need not be single valued upon completing a 2π circuit. This is
the origin of the geometric phase effect that arises when an
electronic wave function completes a circuit around a conical
intersection. Likewise, it is responsible for the Aharonov-Bohm
effect.

Because there are two classes of loops, the universal covering
is double. Thus, SU(2) is used, as it is a double cover of SO(3).
The fact that state vectors are single valued in 4π, whereas they
can change sign in 2π, is illustrated by the transformation of a
Hermitian matrix that represents a 3D vector (rb ) xx̂ + yŷ +
zẑ) in the 2D complex space of SU(2):

Note that the matrices representing rb′ and rbare σb· rb′ and σb· rb,
respectively, where the σi are Pauli matrices. Multiplying out
the three matrices on the right-hand side and comparing the
resulting matrix, element-by-element, to the left-hand side
verifies that this transformation brings about 3D rotations, even
though the transformation matrices use half angles. It is also
clear that multiplying each of the two transformation matrices
(i.e., to the left and right of the rb matrix) by -1 has no effect
because of the double-sided nature. That is, there are two SU(2)
matrices, one the negative of the other, that yield the same 3D
rotation of a physical vector. This can be seen from eq 8 by
writing it as r′ ) MrM† ) (-M)r(-M†). At the same time, it is
obvious that the above transformation matrices rotate a spinor
by a half angle, so a 2π rotation reverses the spinor sign. These
considerations illustrate the double cover.

Returning to relativity, the group of 2 × 2 complex unimo-
dular matrices is called the spin transformation group, SL(2,C).
It is the relativistic counterpart of SU(2); in fact, SU(2) is a
subgroup of SL(2,C). Whereas the universal covering group for
SO(3) is SU(2), the universal covering group for the proper
Lorentz group SO+(1,3) is SL(2,C), also with a double cover.
This is discussed in the books of Penrose and Rindler,28

Sternberg,29 Richtmyer,30 and Schutz.43 Figure 4 summarizes
relationships among the relevant groups.

The double cover of SO+(1,3) by SL(2,C) arises from the
SO(3) part of SO+(1,3), not the boost. This relationship
involving spatial rotations is the same as the one between SO(3)
and SU(2). Therefore, the result obtained in section II is
applicable to the relativistic regime via the spatial rotation part
of SO+(1,3), e.g., as indicated in eq 6. It is not restricted to
nonrelativistic physics.

Rotors. Another matter that deserves comment is the role of
the frames and tether shown in Figure 3. The frames and tether
were introduced as a means of detecting angular displacement.

ip∂t|ψ〉 ) ( 1
2m

(pb - eAb/c)2 - ep
2mc

σb ·Bb + eΦ)|ψ〉σ→(5)

x ) [x0

x1

x2

x3
] (7)

[z' x' - iy'
x' + iy' -z' ] ) [e-iφ/2 cos θ/2 ei�/2 sin θ/2

-e-iφ/2 sin θ/2 eiφ/2 cos θ/2 ]
[z x - iy
x + iy -z ][eiφ/2 cos θ/2 -eiφ/2 sin θ/2

e-iφ/2 sin θ/2 e-iφ/2 cos θ/2 ] (8)

7248 J. Phys. Chem. A, Vol. 113, No. 26, 2009 Wittig



The 2π that was revealed applies to particles of any spin. It is
particle spin that determines the sign change, or lack thereof,
and consequently the statistical property. Let us consider in more
detail spin-1/2, which we shall refer to hereafter simply as spin.
This illustrates the transformation property used to obtain the
fermion exclusion rule.

A spinor can be interpreted as an instruction to rotate a
reference frame into place. A given spin and its spinor are
expressed in relation to a reference frame, and it is customary
to use the +z direction to label “spin-up.” A common expression
for a spinor |ψ〉 is

where 	 and η are complex numbers subject to normalization:
		* + ηη* ) 1. Spatial wave functions are suppressed here to
focus on spin’s transformation properties.

This way of expressing the spinor originated with Cartan.44,45

Referring to Figure 5, the unit sphere (x2 + y2 + z2 ) 1) is
mapped onto the z ) 0 plane using a straight line. This line has
one end fixed at the north pole. The line contains a point x, y,
z on the sphere and a point x′, y′ in the z ) 0 plane.

The complex parameter � ) x′ + iy′ keeps track of x′ and y′
and permits rotations and dilations in the plane to be carried
out using complex algebra. The normalized version is obtained
by setting � ) 	/η, where 	 and η are each complex, and the
pair (	, η) is normalized: 		* + ηη* ) 1. Though the spinor in
eq 9 is used widely, � is also a spinor, albeit not a normalized
one. A standard basis is the north and south poles:

Minor algebraic rearrangement (using � ) x′ + iy′ and the
mathematical expressions in Figure 5) yields x, y, z in terms of
the parameters 	 and η and their complex conjugates:

Spin components are now defined:46

where nk is the expectation value for an arbitrary spinor:

This yields

There is no significant difference between eqs 11 and 14.
They differ only in the sign in front of the imaginary unit i,
which is due to different senses of rotation, as discussed below.
Thus, a correspondence is identified between a unit vector
terminating on the unit sphere and spin expectation values. The
spinor is normalized, so n1

2 + n2
2 + n3

2 ) (		* + ηη*)2 ) 1.
This enables us to write the unit vector n as46

The σi′s in this expression are not operators but unit vectors.
The reason for using σ to label both Pauli matrices and axes is
to underscore the fact that Pauli matrices are but one representa-
tion of a vector-multiplication algebra, i.e., the Clifford algebra
Cl3.47-51 The matrix element in eq 13 can be expressed in terms
of the SU(2) transformation of the north-pole reference spinor:

in which case eq 13 becomes

This highlights the dual interpretation of the spinor, with the
larger matrices acting on either the reference spinor or σ̂k. For
example, suppose the spin is polarized in the +z direction (n1

) n2 ) 0, n3 ) 1 in eq 14). This can be expressed in eq 17 by
using θ ) 0:

Figure 4. Spin transformations brought about with matrices A acting
double-sidedly. The proper (orthochronous) Lorentz transformation Lp

acts single-sidedly, returning the system in 2π. With SL(2,C), a 2π
rotation in the physical space transforms A to -A.

Figure 5. Unit Riemann sphere mapped onto a plane that serves as
an Argand plane for the complex number � ) x′ + iy′.

|ψ〉 ) [	
η ] (9)

north pole:[1
0 ] south pole:[0

1 ] (10)

x ) sin θ cos � ) 	η* + 	*η
y ) sin θ sin � ) -i(	η* - 	*η)
z ) cos θ ) 		* - ηη* (11)

sk ≡ 1
2
pnk (12)

nk ) 〈ψ|σ̂k|ψ〉 ) [	* η* ][σ̂k][	
η ] (13)

n1 ) 	η* + 	*η
n2 ) i(	η* - 	*η)
n3 ) 		* - ηη* (14)

n ) sin θ(cos φ σ1 + sin φ σ2) + cos θ σ3 (15)

[	
η ] ) [ eiφ/2 cos θ/2 -eiφ/2 sin θ/2

e-iφ/2 sin θ/2 e-iφ/2 cos θ/2 ][1
0 ] (16)

nk ) [1 0 ][ e-iφ/2 cos θ/2 eiφ/2 sin θ/2

-e-iφ/2 sin θ/2 eiφ/2 cos θ/2 ][σ̂k]
[eiφ/2cos θ/2 -ei�φ/2 sin θ/2

e-iφ/2 sin θ/2 e-iφ/2 cos θ/2 ][1
0 ] (17)
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Multiplying out the matrices on the right-hand side shows
that the nk are independent of φ, confirming that spin compo-
nents are independent of rotation in the plane perpendicular to
the direction of spin polarization. Now use θ * 0 and φ ) 0 in
eq 17 to tilt the spin in the xz-plane. (Nothing would be gained
by using φ * 0.)

This yields n1 ) sin θ, n2 ) 0, and n3 ) cos θ, i.e., simple
projections.

Equation 17 can be interpreted as keeping the σ1, σ2, and σ3

axes in place and rotating the spin from the north pole onto the
desired direction. This yields the projections given by eq 14.
The same end is achieved by keeping the spin in place (north
pole) and rotating the axes. If R acts from the left on the spinor,
rotation of the σ1, σ2, σ3 axes is given by R†σkR. Note that in
this case the transformation is given by R†σkR rather than the
more common expression RσkR†. This is why eqs 11 and 14
differ by the sign of the imaginary unit i.

The use of 2D complex matrices is less transparent than the
use of geometric algebra, as discussed by Lounesto,47 Doran
and Lasenby,32 Hestenes,48-50 and Hestenes and Sobczyk.51 With
geometric algebra, a spinor is identified as a rotor, e.g., as in
classical mechanics, where it is used to locate the axes of a
rigid body using Euler angles. A couple of lines of algebra show
that when the plane of rotation contains the physical vector (in
this case σ3), R†σ3R yields (R†)2σ3 ) σ3R2.52 Thus, a half angle
rotation R results in a full-angle rotation of the physical vector.
The point is that one sees how a rotational transformation of
the spin reference frame is imposed on the spinor. In the present
case, the 2π displacement that accompanies exchange can be
appended to one particle frame or the other, but not both, as it
is relatiVe orientation that changes. As a result, the exchange
of two odd-half-integer identical particles is accompanied by a
change of sign of the overall wave function. It is clear that
bosons undergo no such sign change because their ms values
are integer.

The sign change of the spinor when n is rotated by 2π is not
a purely quantum mechanical effect. It arises because the spinor
alters an observable through a double-sided operation. The fact
that there are only two spin eigenvalues leads to the SU(2)
representation, or its geometric algebra equivalent, and the spinor
sign change. It is noteworthy that the rotation of a classical
object using a rotor requires that the rotor moves through θ/2
as the classical object moves through θ. In other words, the
same sign change is present in classical physics.32

IV. Summary

• The relationship between a particle’s intrinsic spin and its
statistical properties is embodied in the term (-1)2s. An
explanation of the spin-statistics relation in the nonrelativistic
regime must be based on bookkeeping that involves particle
labels and exchange. This has been achieved in a transparent
manner using visual aids that reveal a 2π angular displacement
that accompanies exchange. It is well-known26,27 that a

2-spinor changes sign when subjected to a 2π spatial rotation.
Thus, the (-1)2s term is a consequence of the 2π displacement.

• In considering spin-1/2, it is noted that the group SU(2) is a
double cover of SO(3), the group of proper rotations in 3D.
The topological space SO(3) is not simply connected, so wave
functions need not be invariant with respect to 2π rotation,
whereas SU(2) is simply connected. The proper Lorentz group,
SO+(1,3), can be expressed as a product of rotations and a
boost in the direction of motion. Its covering group, SL(2,C),
relates to SO+(1,3) in the same way that SU(2) relates to
SO(3). The (-1)2s obtained by examining rotations in SO(3)
applies to the proper Lorentz group because spatial rotations
are the same in SO(3) and SO+(1,3).

• Spin is not relativistic. The low-velocity limit of the Dirac
equation is the Pauli equation, which is nonrelativistic, but
nonetheless contains spin. The fact that there are two
eigenvalues leads to SU(2), or its geometric algebra equiva-
lent, and exclusion.

• It is interesting to reflect on interpretation. An electron is a
point particle that acquires mass by interacting with the Higgs
field. It obeys an exclusion rule. This rule and the properties
of spin-1/2 are one and the same. Spin-1/2 implies SU(2) or its
equivalent because this accommodates 2 eigenstates for a 3D
angular momentum. This leads to exclusion via the 2π
discussed herein. Alternatively, the 2π, together with exclusion
rules, leads to something we call spin. This perspective assigns
exclusion to the particle, and spin follows. It can be said that
spin and exclusion are each intrinsic. However, each implies
the other, so there is no cause-effect relationship.

Appendix

Consider the orientation of an asymmetric object relative to the
laboratory. A Cartesian frame is affixed to the object (with its
origin at the object’s center-of-mass), and one of its axes points
in the laboratory ẑ direction. This axis is now rotated through
angles θ and φ onto a direction k̂. The angle � then records the
amount of “twist” of the object around k̂. These (Euler) angles
define the object’s orientation.

This can be parametrized using the 3-ball, which is a solid
sphere of radius π, as indicated in Figure A1.41,42 With the 3-ball,
k̂ retains its meaning as the direction defined by θ and φ, whereas
angular displacement ∆� is represented by distance along a
diameter.

An increase of � is represented in the 3-ball by the length of
a line superimposed on the diameter that overlaps the k̂ direction.
Let us start with � ) 0, i.e., at the origin. At � ) π, the line
stretches from the origin to the surface at point a. Point a is

nk ) [1 0 ][e-iφ/2 0

0 eiφ/2 ][σ̂k][eiφ/2 0

0 e-iφ/2 ][1
0 ] (18)

nk ) [1 0 ][cos θ/2 sin θ/2
-sin θ/2 cos θ/2 ][σ̂k][cos θ/2 -sin θ/2

sin θ/2 cos θ/2 ]
[1
0 ] (19)

Figure A1. A cross section of the 3-ball contains the diameter
associated with angle �. When � increases by 2π with k̂ fixed, a straight
line is produced that passes through the origin and touches the surface
at the two antipodal points, a and b. The path inside the sphere can be
continuously distorted and the antipodal points can be moved, but they
must always remain diametrically opposed. It is impossible to continu-
ously distort this “loop” until it is a point because of the antipodal
requirement.
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equivalent to the antipodal point b on the surface in the -k̂
direction, because twisting an object counterclockwise in the k̂
direction is the same as twisting it clockwise in the -k̂ direction,
and π and -π are the same. Thus, when the system reaches a,
it has also reached b.

As � goes from π to 2π, the solid straight line in Figure A1
now goes from b to the origin. Thus, for the complete 2π circuit
of �, the line: (i) starts at the origin; (ii) goes to a; (iii) appears
simultaneously at b; (iv) goes from b to the origin. It is possible
to begin and end at different points along the diameter (i.e.,
rather than the origin), but the antipodal character must remain.
It is impossible to continuously distort the path to a point
because it must retain its antipodal character. This demonstrates
that SO(3) is not a simply connected topological space.

Next, the object is rotated through an additional 2π. In Figure
A2a the first circuit (blue) is not quite closed, to enable the
start and end points to be identified. In (b) a small jog makes
the second circuit (red) clear. After completion of the second
circuit, the red line rejoins the blue line at the start point, yielding
the closed 4π circuit.

As mentioned above, paths inside the ball can be continu-
ously deformed as long as the antipodal nature is preserved.
Referring to Figure A2b, take the red point at a and drag it
counterclockwise along the surface to a point in the upper
left quadrant of the figure. The red point at b must move (in
synchrony) counterclockwise along the surface to preserve
antipodal character. This results in Figure A3a. Now shrink
the left part in Figure A3a until it vanishes. This results in
the remaining curve that lies in the interior of the sphere, as
indicated in Figure A3b. Clearly this loop can be shrunk to
a point. This demonstrates that 4π can be continuously
distorted to a point.
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